Technical Progress of NCD's Soft Magnetic Materials Used for Energy Related Fields

Soft magnetic components used in photovoltaic inverters (isolated type)

Soft magnetic components used in photovoltaic (PV) inverters (non-isolated type)

Soft magnetic components used in energy storage inverters

Soft magnetic components used in charging piles

Wide temp. low loss High freq. low loss 1-3MHz 235kW/m³ @300kHz, 100mT LP10F^{NEW} LP7^{NEW} -40-140°C 0.5-2MHz 115kW/m³ LP10A^{NEW} @2MHz, 50mT LP6^{NEW} 270kW/m³ 0.3-1MHz 150kW/m³ **LP10** @1MHz, 50mT LP5W^{NEW} 280kW/m³ 50kW/m³ LP9 @0.5MHz, 50mT 310kW/m³ LP 350kW/m³ LP4 LP3A 450mT @100°C 300kW/m³ **LP90** LP3S 490mT @100°C 320kW/m³ LP4ANEW 450mT@ 100°C LP3H^{NEW} LP4BNEW 420kW/m³@150°C 450kW/m³ 400mT @ 140°C High Bs Low loss

Low power loss (LP) ferrite material system

Suitable materials for main transformer and resonant inductor in isolated power conversion

SNCD Nanjing New Conda Magnetic Industrial Co., Ltd. • Maanshan New Conda Magnetic Industrial Co., Ltd.

High permeability (HP) ferrite material system

NCD Nanjing New Conda Magnetic Industrial Co., Ltd. • Maanshan New Conda Magnetic Industrial Co., Ltd.

Magnetic powder core material system

	材料	μ	Bs (T)	Pc (kW/m ³) 50kHz/100mT	DC Bias (%) (L _{1000e} /L ₀)	Tc (°C)
	NH	26-125	1.5	200	85	500
Suitable materials	NHU	60-125	1.5	140	90	500
for PFC inductor	NS	26-125	1.03	220	46	600
	NSW	26-90	1.03	140	57	600
	NSW-L	26-90	1.03	110	57	600
Suitable materials	NK	19-90	1.5	500	72	700
in non-isolated	NKH	26-90	1.5	370	78	500
power conversion	NHK	26-90	1.5	280	81	500
	NSH	26-90	1.15	160	65	500
	NHS	26-90	1.35	180	76	500
	NKS	26-90	1.15	260	62	600

The PV microinverters installed on outdoor roofs operate in a wider ambient temperature range than typical indoor applications. In different seasons, sunshine and load conditions, the operating temperature of soft magnetic components may be from -40 ° C to +80~90 ° C, requiring ferrite materials to have stable characteristics, especially low power loss in a wide temperature range, which affects the efficiency and reliability of the microinverters.

Input Data(DC)	M215-60-2LL-S22/23 M215-60-2LL-S22-NA/S23-NA(Or	ntario)			
Recommended maximum input power(STC)	260W				
Maximum input DC voltage	45V				
Peak power tracking range	22V-36V				
Operating range	16V-36V				
Min./Max. start voltage	26.4V/45V				
Max. DC short circuit current	15A		Although a start and and		The second s
Max. input current	10.5A	6040 V			L
Output Data(AC)	(w208 vac	(w240 vac			
Maximum output power	215W	215W			0
Nominal output power	1.0A*	0.9A*			B
Nominal voltage/range	208V/183V-229V	240V/211V-264V			
Extended voltage/range	2087/1/97-2327	2407/2067-2697			
ivominai mequency/range	60.0/59.3-60.5	60.0/59.3-60.5			
Externueu irequency/range	00.0/59.2-60.6	0U.U/39.2-6U.6			
Power ración	>U.93	20.93			
Maximum units per 20A branch circuit	25 (three phase)	17 (single phase)			
Maximum output fault current	1.05 Arms, over 3 cycles; 25.2 Apeak	*Arms at nominal voltane			
Efficiency					
CEC weighted efficiency		96.0%			
Peak inverter efficiency		96.3%			
Static MPPT efficiency (weighted, reference ENS	50530)	99.6%			
Dynamic MPPT efficiency (fast irradiation change	es, reference EN50530)	99.3%			
Night time power consumption		46mW			
Mechanical Data					
Ambient temperature range	-40°C to +65 °C				
Operating temperature range (internal)	-40°C to +85 °C		A vale is not to paper at we w		4000 to 16E 0
Dimensions (WxHxD)	17.3cm x 16.4cm x 2.5cm (6.8" x 6.4	15" x 1.0")	Ambient temperature ra	anye	-40°C W +65 °
Weight	1.6 kg (3.5 lbs)				
Cooling	Natural convection - no fans		Operating temperature	range (internal)	-40° C to $\pm 85^{\circ}$
Enclosure environmental rating	Outdoor - NEMA 6	*without mounting bracket	operating temperature	range (internal)	
Features					
Compatibility	Pairs with most 60-cell PV modules				
Communication	Power line				
Warranty	25-year limited warranty				
Compliance	UL1741/IEEE1547, FCC Part 15 Class	B			
	CAN/CSA-C22.2 NO. 0-M91, 0.4-04, a	and 107.1-01			

- In view of the disadvantages that traditional power ferrites can only achieve low loss in a narrow temperature range, TDK developed PC95 wide temperature low loss MnZn ferrite material in 2000. The LP9 material corresponding to PC95 was developed in 2006 by NCD.
- With the continuous improvement of material performance requirements for photovoltaic, automotive and other applications, especially with the accelerated penetration of SiC and GaN wide-gap semiconductor devices, the first generation of wide-temperature low loss materials have high power loss in wider temperature ranges and higher frequencies. The market is in urgent need of new broad-temperature low loss materials with flatter temperature characteristic curves and higher application frequency.

• One of the main reasons that the power loss of MnZn ferrite material varies with temperature is that the magneto-crystalline anisotropy constant K₁, which affects the hysteresis loss (P_h), changes with temperature. Low hysteresis loss and high permeability (μ_i) can only be achieved near a single temperature point where K₁ compensation is zero.

Based on the study of the mechanism affecting the temperature dependence of K₁, through the technical innovation of the material principal component, additives, powder processing and sintering microstructure control, the temperature point where K₁ compensation is zero is changed from a single temperature point to high and low temperature two points, which greatly reduces the temperature dependence of the magneto-crystalline anisotropy of the material. On this basis, LP10 new material series have been successfully developed.

Characteristic	Symbol	Condition	LP9	LP10	LP10A
Initial permeability	μi		3300±25%	3300±25%	3300±25%
Saturation flux	Bs(mT)	25℃	530	540	540
density*	@1194A/m	100°C	420	430	430
		25℃	350	300	290
		60°C	315	285	270
Dower loss *	Pcv (kW/m ³)	80°C	305	275	265
Power loss *	@100kHz, 200mT	100°C	310	280	270
		120°C	350	320	300
		140°C	_	360	340
Curie temp.	Tc (°C)		>215	>230	>230
Density *	d (kg/m ³)		4.9×10 ³	4.9×10 ³	4.85×10 ³

Test sample: OD25/ID15/HT10 ring-core *Typical value

Development and mass production of ferrite P-core series used for main transformer in PV microinvertor

 Based on the development of high-performance LP10 material series, combined with automatic powder preparation, efficient rotary pressing, automatic green-core stowage, large-scale atmosphere controlled push-type kiln sintering, precision surface and air gap grinding and production management and quality management system based on MES, after years of efforts, NCD has become the largest Chinses supplier of the ferrite P-core series (P52/P52B/P61.7/P80.8) used by international leading enterprise of PV microinverters.

Development and mass production of ferrite P-core series used for main transformer in PV microinvertor

• NCD is implementing a construction project of the intelligent production line of P-core series. It is expected that after putting into operation in 2024, the molding - sintering - grinding processing process can be fully automated production, improve production efficiency and quality level, reduce labor costs, and double production capacity.

• Challenges faced by soft ferrites

Higher frequency

Higher temperature

- High-frequency is an effective means to achieve miniaturization, lightweight and low-cost magnetic components, so it is always a hot spot in the development of power conversion technology.
- The introduction of SiC device reduces the switching loss at high frequency and pushes up the design operating frequency of the circuits.

- High ambient temperatures for outdoor PV microinverters and charging piles.
- High power densification increases the design working magnetic flux density of the core, causing greater magnetic loss, which leads to higher temperature rise.
- The high temperature stability of the SiC device and the high temperature resistance of the insulated wire skeleton (H class :180°C) push up the design operating temperature of the magnetic components.

 Power quality related devices (UPS, energy storage inverters) are high-powered.

Larger core size

- Large EMI filter magnetic components of distributed PV systems.
- DC fast charging pile with high power.

Large cores for energy related applications

Small cores for communications and consumer electronics

• Challenge: With the increase of size, the performance of low-loss ferrite core deteriorates at high temperature and high frequency

Composition of power loss: $P_c = P_h$ (hysteresis) + P_e (eddy current) + P_r (residue)

 $= f \oint B dH + C f^2 B_m^2 D^2 / \rho + P_r \qquad \text{(Note: } P_r \text{ below 500kHz can be ignored)}$

P _c , P _h , P _e @ 100kHz,100mT,100°C							
Item P_{c} (kW/m ³) P_{h} (kW/m ³) P_{e} (kW/m ³) P_{h}/P_{c} (%) P_{e}/P_{c} (%) A_{e} (mm ²) V_{e} (mm ³)						V _e (mm ³)	
T25/15/10	47.5	18.7	28.8	39.4	60.6	48.9	2940
EE86/57/35 97.9 25.9 72.0 26.5 73.5 965 234000							

Large core

- With the increase of the magnetic core size, the eddy current path induced by the excitation field in the magnetic core increases, and the eddy current intensity, eddy current loss P_e and the proportion in the total magnetic loss P_e/P_c also increase.
- Due to the positive temperature characteristic of P_{e^r} the total magnetic loss increases sharply with the rise of temperature, resulting in high temperature power loss deterioration of large cores.
- Since P_e is proportional to the square of the frequency, the power loss at high frequencies of large cores is more degraded.

• Eddy current mechanism study

Eddy current loss $P_{\rm e} = C f^2 B_{\rm m}^2 D^2 / \rho$

- Because eddy current has significant influence on high frequency and high temperature performance of large ferrite cores, the research focus is on eddy current suppression.
- For a particular core, C is a constant; Working conditions (*f*, *B_m*) are also determined by design. The only way to suppress eddy current loss is to reduce grain size *D* and increase resistivity *ρ*.
- In contrast to metallic materials, the resistivity of MnZn ferrite decreases with increasing temperature, showing a negative temperature characteristic similar to semiconductor, which is related to the electronic transition conduction mechanism between Fe²⁺ and Fe³⁺. This is the reason why the eddy current loss of the core has a positive temperature characteristic.

• Eddy current mechanism study

• R&D results: 300kHz wide temp. low loss MnZn ferrite

Grain homogenization and refinement

EE 86/57/35: P_c, P_h, P_e @ 100kHz,100mT,100°C $P_{\rm c}$ (kW/m³) $P_{\rm h}$ (kW/m³) $P_{\rm e}$ (kW/m³) $P_{\rm h}/P_{\rm c}$ (%) $V_{\rm e}$ (mm³) $P_{\rm e}/P_{\rm c}$ (%) $A_{\rm e}$ (mm²) Item Before improvement 97.9 25.9 72.0 26.5 73.5 965 234000 51.3 After improvement 79.1 27.8 35.1 64.9 965 234000

- Through a series of technical improvements, the resistivity of the material at 100°C increased by 2.8 times; The grain is more uniform and refined.
- With the increase of resistivity and the decrease of grain size, eddy current inside the large magnetic core is effectively inhibited. The eddy current loss of the typical magnetic core EE86/57/35 at 100kHz, 100mT and 100°C is reduced by 28.7%, the hysteresis loss is increased by 7.3%, and the total power consumption of the magnetic core is reduced by 19.2%.

• R&D results: 300kHz wide temp. low loss MnZn ferrite

Characteristics	LP10A	LP10F new
Initial permeability $\mu_{ m i}$	3300±25%	3000±25%
Saturation flux density B_{s} @1194A/m	540 (25°C)	530 (25℃)
(mT)	430 (100°C)	420 (100°C)
Curie temperature T_{c} (°C)	230min.	230min.
Density d (kg/m ³⁾	4.85×10 ³	4.85×10 ³
Resistivity ρ ($\Omega \cdot m$)	6	8
	290 (25°C)	
Power loss P _c @100kHz,200mT	265 (80°C)	
(kW/m ³)	300 (100°C)	
	340 (120°C)	
		250 (25°C)
Power loss P. @300kHz.100mT		235 (100°C)
(kW/m ³)		270 (120°C)
		330 (140℃)

 Based on the above study work, NCD has developed a 300kHz widetemperature low loss MnZn ferrite material LP10F, which is suitable for SiC device application scenarios.

• R&D results: 300kHz wide temp. low loss MnZn ferrite

- Compared with the existing material LP10A, the power loss of LP10F is little different at 100kHz, but the difference is significant at 300kHz, indicating that the high frequency characteristics of the material are improved.
- It is mainly suitable for medium and high frequency, medium and high power scenarios using SiC devices, such as optical storage integration system, high power fast charging pile, etc.
- With the popularity of SiC device applications, it is expected that 300kHz lowpower ferrite materials will gradually replace the current 100kHz materials and become the mainstream materials in the field of medium and high-power conversion.

• R&D results: 300kHz wide temp. low loss MnZn ferrite

Application example: 20kW DC/DC converter module based on SiC MOSFET and LLC circuit topology

Switching frequency: 150~400kHz; Resonant frequency: 200kHz
 Input voltage: 650~750V_{dc} ; Output voltage: 400~550V_{dc}
 Rated output power: 20kW; Maximum efficiency ≥98.4%
 Dimension: 275mm×220mm×65mm; Power density: 60W/inch³

 NCD has accumulated many years of technology and experience in the R&D and manufacturing of large-size ferrite cores, and has advanced, efficient and large-scale production lines, with a wide variety of product specifications and excellent performance quality. For new products, CNC engraving can be used to quickly prepare samples. NCD can provide customers with effective cooperation and support from the design stage to mass production stage.

Contact information

Ms. Liu: +86 18922840425 Lcq@ncd.com.cn sales@ncd.com.cn Mr. Chen: +86 18051977988 schen@ncd.com.cn

No.8, Tianhe Road, Qilin Industry Park, Jiangning District, Nanjing, China Zip: 211135 Tel: +86-25-84120630 Fax: +86-25-84120164

Thank You

Welcome for Inquiry

www.ncd.com.cn